We propose Universal Document Processing (UDOP), a foundation Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation. UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation. With a novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain downstream tasks into a prompt-based sequence generation scheme. UDOP is pretrained on both large-scale unlabeled document corpora using innovative self-supervised objectives and diverse labeled data. UDOP also learns to generate document images from text and layout modalities via masked image reconstruction. To the best of our knowledge, this is the first time in the field of document AI that one model simultaneously achieves high-quality neural document editing and content customization. Our method sets the state-of-the-art on 9 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites. UDOP ranks first on the leaderboard of the Document Understanding Benchmark (DUE).
translated by 谷歌翻译
Diverse data formats and ontologies of task-oriented dialogue (TOD) datasets hinder us from developing general dialogue models that perform well on many datasets and studying knowledge transfer between datasets. To address this issue, we present ConvLab-3, a flexible dialogue system toolkit based on a unified TOD data format. In ConvLab-3, different datasets are transformed into one unified format and loaded by models in the same way. As a result, the cost of adapting a new model or dataset is significantly reduced. Compared to the previous releases of ConvLab (Lee et al., 2019b; Zhu et al., 2020b), ConvLab-3 allows developing dialogue systems with much more datasets and enhances the utility of the reinforcement learning (RL) toolkit for dialogue policies. To showcase the use of ConvLab-3 and inspire future work, we present a comprehensive study with various settings. We show the benefit of pre-training on other datasets for few-shot fine-tuning and RL, and encourage evaluating policy with diverse user simulators.
translated by 谷歌翻译
The diverse demands of different summarization tasks and their high annotation costs are driving a need for few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose \textsc{UniSumm}, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization datasets. Meanwhile, to better evaluate few-shot summarization systems, under the principles of diversity and robustness, we assemble and publicize a new benchmark \textsc{SummZoo}. It consists of $8$ diverse summarization tasks with multiple sets of few-shot samples for each task, covering both monologue and dialogue domains. Experimental results and ablation studies show that \textsc{UniSumm} outperforms strong baseline systems by a large margin across all tasks in \textsc{SummZoo} under both automatic and human evaluations. We release our code and benchmark at \url{https://github.com/microsoft/UniSumm}.
translated by 谷歌翻译
We study the hidden-action principal-agent problem in an online setting. In each round, the principal posts a contract that specifies the payment to the agent based on each outcome. The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal. The principal observes the outcome and receives utility from the agent's choice of action. Based on past observations, the principal dynamically adjusts the contracts with the goal of maximizing her utility. We introduce an online learning algorithm and provide an upper bound on its Stackelberg regret. We show that when the contract space is $[0,1]^m$, the Stackelberg regret is upper bounded by $\widetilde O(\sqrt{m} \cdot T^{1-C/m})$, and lower bounded by $\Omega(T^{1-1/(m+2)})$. This result shows that exponential-in-$m$ samples are both sufficient and necessary to learn a near-optimal contract, resolving an open problem on the hardness of online contract design. When contracts are restricted to some subset $\mathcal{F} \subset [0,1]^m$, we define an intrinsic dimension of $\mathcal{F}$ that depends on the covering number of the spherical code in the space and bound the regret in terms of this intrinsic dimension. When $\mathcal{F}$ is the family of linear contracts, the Stackelberg regret grows exactly as $\Theta(T^{2/3})$. The contract design problem is challenging because the utility function is discontinuous. Bounding the discretization error in this setting has been an open problem. In this paper, we identify a limited set of directions in which the utility function is continuous, allowing us to design a new discretization method and bound its error. This approach enables the first upper bound with no restrictions on the contract and action space.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing works have to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on all metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
知识密集型任务,例如开放域问题答案(QA),需要访问大量的世界知识或领域知识。知识密集型任务的一种常见方法是采用检索到阅读的管道,该管道首先从诸如Wikipedia之类的外部语料库中检索少数相关的上下文文档,然后预测在检索文档的条件下得到答案。在本文中,我们提出了一种新的观点,可以通过用大型语言模型生成器代替文档检索器来解决知识密集型任务。我们称我们的方法生成-Read Read(GenRead),该方法首先提示大型语言模型根据给定问题生成上下文文档,然后读取生成的文档以产生最终答案。此外,我们提出了一种基于聚类的提示方法,该方法选择了不同的提示,从而产生了涵盖不同观点的生成文档,从而更好地回忆了可接受的答案。我们对三个不同的知识密集任务进行了广泛的实验,包括开放域质量检查,事实检查和对话系统。值得注意的是,GenRead在Triviaqa和WebQ上实现了71.6和54.4的精确匹配分数,显着超过了最先进的检索到+4.0和+3.9的最先进的dpr-fid,而无需从任何外部知识源中检索任何文档。最后,我们证明可以通过结合检索和生成来进一步提高模型性能。
translated by 谷歌翻译
多跳问题回答(QA)需要对多个文档进行推理,以回答一个复杂的问题并提供可解释的支持证据。但是,提供支持证据不足以证明模型已经执行了所需的推理来达到正确的答案。大多数现有的多跳质量检查方法也无法回答大部分子问题,即使他们的父母问题得到了正确的回答。在本文中,我们为多跳QA提出了基于及时的保护学习(PCL)框架,该框架从多跳QA任务中获取了新知识,同时保留了在单跳QA任务上学习的旧知识,从而减轻了遗忘。具体来说,我们首先在现有的单跳质量检查任务上训练模型,然后冻结该模型,并通过为多跳质量检查任务分配其他子网络来扩展它。此外,为了调整预训练的语言模型以刺激特定多跳问题所需的推理类型,我们学习了新型子网络的软提示,以执行特定于类型的推理。 HOTPOTQA基准测试的实验结果表明,PCL具有多跳质量质量质量检查的竞争力,并且在相应的单跳子问题上保留了良好的性能,这表明PCL通过忘记通过忘记来减轻知识丧失的功效。
translated by 谷歌翻译
本文介绍了Z-Code ++,这是一种针对抽象文本摘要优化的新的预训练的语言模型。该模型使用三种技术扩展了艺术编码器模型的状态。首先,我们使用两阶段的预训练过程来改善模型在低资源摘要任务上的性能。该模型首先是使用文本语料库进行语言理解的预先培训的,然后在汇总语料库中不断预先培训,以进行基础文本生成。其次,我们用分离的注意力层代替编码器中的自我发项层,其中每个单词都使用两个向量分别代表其内容和位置。第三,我们使用融合编码器,这是一种以层次方式编码长序列的简单而有效的方法。 Z-Code ++在13个文本摘要任务中的9个跨5种语言中创建了新的艺术状态。我们的模型的参数有效,因为它的表现优于XSUM上600倍较大的Palm-540b,并且在Samsum上的易经的200倍GPT3-175B较大。在零射击和少量设置中,我们的模型大大优于竞争模型。
translated by 谷歌翻译